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In this report� we discuss Vapnik�s support vector machines ���� for separable
and non�separable data� We discuss implementation issues� generalization per�
formance� and how they are remarkably di	erent from existing classi
er design
methodologies�

�� The optimal hyperplane as a quadratic programming problem

Consider a 
nite set S of vectors

�x�� y��� �x�� y��� ����� �xk � yk��

from the space Rn � f��� �g� Consider a unit vector � � Rn� We say that the
data is separable by the hyperplane

x � � 
 c

if
xi � � � c� yi 
 �

xi � � � c� yi 
 ���
We de
ne two functions of the data S and any vector ��

c���� 
 min
yi��

xi � �

c����� 
 max
yi���

xi � ��

De
ne the margin of the hyperplane

x � � 
 c

to be
���� c� 
 min fc����� c� c� c�����g

A hyperplane is said to be optimal if it maximizes the margin over all hyper�
planes� Namely� it solves the optimization problem
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max ���� c� ���

j�j 
 �� ���

For a 
xed �� ���� c� is maximized when c 
 c��c��
� and then � 
 c�����c����

� �
Consequently� we can say that a hyperplane ���� c�� is optimal if

c� 

c����� � c������

�

where �� maximizes

���� 

c���� � c�����

�
�

We thus rede
ne the margin

���� 

c����� c�����

�

and the optimization problem

max ���� ���

j�j 
 �� ���

We begin by proving the 
rst important fact�

Theorem � �Vapnik� ����� The optimal hyperplane is unique�

Proof� Existence of the maximum of � on j�j � � follows from the continuity of
�� We now show that the maximum must be achieved on the boundary j�j 
 ��
Suppose this was not the case and the maximum was achieved at the point ��
with j��j � �� Since � is positively homogeneous� the point

�� 

��

j��j
has the larger margin

����� 

�����

j��j �

giving a contradiction� Consequently� the maximum is achieved only at the
boundary j�j 
 ��

Since a maximization over a set of convex functions is convex� and concave
functions are just negatives of convex ones� the fact that � is a minimization � a
maximization over linear functions� which are both convex and concave� implies
that � is concave�

We now show that a maximum can only occur at one point on the boundary�
Suppose to the contrary� that the maximum occurs at two distinct points on
the boundary� Then since � is a concave function� the maximum must also be
realized on the line segment connecting the two points contradicting the fact
that the maximum may only be obtained on the boundary�
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�

To e�ciently compute optimal hyperplanes we form an equivalent optimiza�
tion problem�

min
�

�
j�j� ���

xi � � � b � �� yi 
 � ���

xi � � � b � ��� yi 
 ��� ���

Theorem � �Vapnik� ����� The vector �� that solves the above quadratic pro�
gramming problem is related to the optimal hyperplane vector �� by

�� 

��

j��j �

The margin of the optimal hyperplane ���� c�� is

����� 

�

j��j �

Proof� Let �� denote a solution to the quadratic programming problem� Consider

�� 

��

j��j �

Since �� satis
es the constraints for some b� it is clear that ����� � � so that

����� 
 ��
��

j��j � �
�

j��j �

To prove the theorem� we just need to show that there does not exist a unit
vector �� such that

����� �
�

j��j �

Suppose that such a �� exists� If we de
ne

�� 

��

�����

then it is clear that
����� 
 �

and

j��j 
 �

�����
� j��j�

For yi 
 ��

xi � �� � c���
�� 


c���
��� c����

��

�
�
c���

�� � c����
��

�
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 ����� �
c���

�� � c����
��

�

 � �

c���
�� � c����

��

�

so that �� satis
es the constraint

xi � � � b � �� yi 
 �

with

b 
 �c���
�� � c����

��

�
�

For yi 
 ���

xi � �� � c����
�� 


c����
��� c���

��

�
�
c���

�� � c����
��

�


 ������ � c���
�� � c����

��

�

 �� � c���

�� � c����
��

�

so that �� satis
es the constraint

xi � � � b � ��� yi 
 ��
with the same value of b�

Consequently� j��j � j��j and satis
es the constraints� contradicting the
assumption that �� was optimal for the problem f�����g�

�

Theorem � �Kuhn�Tucker� Consider the convex programming problem	

min f�x�

subject to the constraints

gi�x� � �� i 
 �� ��� k

where f and gi� i 
 �� ��� k are convex�
De
ne the Lagrangian

L�x� ��� �� 
 ��f�x� �

kX
i��

�igi�x�

where � 
 ���� ������ �k�� If x
� solves the convex programming problem� then there

exists Lagrange multipliers ��� and �� 
 ����� ������ �
�
k� both not simultaneously

zero such that the following three conditions hold

min
x

L�x� ���� �
�� 
 L�x�� ���� �

��

��� � �� �� � �

��i gi�x
�� 
 �� i 
 �� ��� k�
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If ��� �
 �� then these three conditions are su�cient for x� to be a solution
of the convex programming problem� In order for ��� �
 � it is su�cient for the
Slater conditions to be satis
ed� Namely� there should exist an �x such that

gi��x� � �� i 
 �� ���� k�

If the Slater condition is satis
ed� one can rewrite the Lagrangian as

L�x� �� 
 f�x� �

kX
i��

�igi�x�

and the three conditions are equivalent to the existence of a saddle point of the
Lagrangian� where �x�� ��� is said to be a saddle point of L if

L�x�� �� � L�x�� ��� � L�x� ���

for all x and � � ��

Now let us return to the quadratic programming problem f�����g� Rewrite
the constraints to obtain a the more compact form�

min
�

�
j�j� ���

yi�xi � � � b� � �� ���

For separable data� the Slater condition is satis
ed� so by the Kuhn�Tucker
theorem solving the quadratic programming problem is equivalent to 
nding a
saddle point of the Lagrangian

L��� b� �� 

�

�
j�j� �

kX
i��

�i�yi�xi � � � b�� ���

where � � �� Since the Lagrangian is convex in ��� b� and concave in �� we can
apply von Neumann�s theorem ��� to 
nd the saddle by 
rst minimizing L over
��� b� followed my maximizing over � � ��

Minimization with respect to ��� b� determines the equations

	L

	�

 � �

kX
i��

�iyixi 
 ��

	L

	b



kX
i��

�iyi 
 ��

Consequently� for the vector � that de
nes the optimal hyperplane

� 


kX
i��

�iyixi�
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kX
i��

�iyi 
 ��

Substituting into the Lagrangian we obtain

W ��� 


kX
i��

�i � �

�

kX
i�j��

�i�jyiyj�xi � xj��

Upon maximization we obtain a �� � � such that the optimal vector �� can
be written

�� 


kX
i��

��i yixi�

In addition� the equation

yi�xi � �� � b��� � 
 �

implies the vector xi is one of the closest to the optimal hyperplane� See Figure
� where those closest are enlarged circles and crosses�� Such vectors are called
support vectors�

Since the Kuhn�Tucker conditions

��i �yi�xi � �� � b��� �� 
 �� i 
 �� ��� k

are satis
ed� they imply that a non�zero value of ��i corresponds to a support
vector xi�

Since

�� 


kX
i��

��i yixi 
 ��

is a linear combination of support vectors� the function describing the separation
hyperplane

f�x� 
 x � �� � b�

has the form

f�x� 


kX
i��

��i yi�xi � x� � b�

where the only nontrivial part of the sum is over the support vectors�
It will be important later in that both the function

f�x� 


kX
i��

��i yi�xi � x� � b�

and the objective function

W ��� 


kX
i��

�i � �

�

kX
i�j��

�i�jyiyj�xi � xj��

do not depend explicitly on the dimensionality of the vector x and xi but only
depend upon the inner product of such vectors�
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�� Complexity properties of optimal hyperplanes

Now we describe some of the consequences of choosing an optimal hyperplane
for classi
cation� The representation of a hyperplane

x � � � b 
 �

by the tuple ��� b� is called canonical� with respect to the data S� if

inf
x�S

jx � � � bj 
 ��

We state� without proof� the main theorem concerning optimal hyperplanes�
The 
rst proof of this theorem was obtained by Hush and Scovel ����

Theorem � �Vapnik� Suppose that the data S lies in a ball of radius D� A set
of hyperplanes whose canonical representatives satisfy

j�j � A

has its V C dimension bounded by

min��D�A��� n� � �

where �� denotes the integral part�

Since the pairs ��� b� are canonical� they satisfy the constraints

yi�xi � � � b� � ��

for the partition determined by

yi 
 sign�xi � � � b��

Consequently� for this labelling� the margin of the hyperplane is

��
��

j��j � �
�

j��j �
�

A
�

Consequently� this theorem can be formulated with respect the the margin
but requires some terminology�

De�nition � Let X 
 �n be the n�dimensional Euclidean space� and let H
be the family of linear classi
ers c�x� 
 sign�h�x�� where h�x� is an a�ne
function� Further� let H� be the set of linear classi
ers that dichotomize X using
hyperplanes of thickness �� More formally� de
ne H� to be classi
ers of the form

c��x� 
 c�x�� D�xjh 
 �� � �

where D�xjh 
 �� is the distance from x to the hyperplane h 
 �� �Note that
c��x� is not de
ned for fx � D�xjh 
 �� � �g�� The margin of classi
ers in H�

is de
ned to be �� Finally� let H�� be the set of linear classi
ers with thickness
greater than or equal to �� that is H�� 
 	���H��



� Don Hush and Clint Scovel

Theorem � Let S 
 fx�� x�� ���� xkg 
 Rn denote a set of points contained
within a sphere of radius D� The VC dimension of H�� restricted to S satis
es

V Cdim�H��� � min�dD
�

��
e� n� � ��

Recall that we de
ne a support vector �xi� yi� to be such that the constraint

yi�xi � �� � b��� � � �

is active� Namely�
yi�xi � �� � b��� � 
 ��

This implies the vector xi is one of the closest to the optimal hyperplane� In the
expansion�

�� 


kX
i��

��i yixi

a nonzero value of the Lagrange multiplier �� means that the constraint must
be active and consequently� the expansion of the optimal hyperplane vector ��

is in terms of of support vectors� Although the vector �� is unique� its expansion
in terms of support vectors is not� Let K� the essential support vectors� be the
set of support vectors that are in all the expansions of ��� We can then prove
the following theorems�

Theorem � �Vapnik�
jKj � n�

Also�

Theorem 	 �Vapnik�

E�error� � E�jKj�
k � �

� n

k � �

�� The support vector machine

Since the VC dimension of the set of linear classi
er in Rn is n��� it is clear that
large dimensional classi
cation problems are di�cult� However� a consequence of
Theorem � is that even if the dimension n is large� if the data can be separated by
a large margin� then the VC dimension of classi
ers with that margin is bounded
by

min�dD
�

��
e� n� � ��

where � is the margin�
This observation gives rise to the the support vector machine as follows�

Map the data to a high dimensional feature space� and in this space classify
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using the optimal hyperplane� If the margin happens to be large then Theorem
� suggests that we will obtain good generalization performance� However� even
if the optimal hyperplane in the high dimensional space has a good margin� the
dimensionality of this space may discourage computations there� To deal with
this problem� let us recall that both the hyperplane

f�x� 


kX
i��

��i yi�xi � x� � b�

and the objective function

W ��� 


kX
i��

�i � �

�

kX
i�j��

�i�jyiyj�xi � xj��

do not depend explicitly on the dimensionality of the vector x and xi but only
depend upon the inner product of such vectors�

Suppose that we can map


 � Rn � H
from our space of covariates Rn to some Hilbert space H in such a way that

� 
�x�� 
�y� �
 K�x� y�

for some known and easy to evaluate function K� Then 
nding an optimal hy�
perplane in H amounts to optimizing the objective function

W ��� 


kX
i��

�i � �

�

kX
i�j��

�i�jyiyjK�xi� xj��

which then de
nes the classi
er sign�f�x�� where

f�x� 


kX
i��

��i yiK�xi� x� � b��

Thus� even though H may be of very large dimensionality� we do not need to
operate there to construct an optimal hyperplane there�

Let us describe a simple example� evidently 
rst described by Vapnik� Let
x 
 �x�� x�� be a two dimensional vector� The function K�x� y� 
 �x � y�� can be
represented as K�x� y� 
 
�x� � 
�y� where


�x� 

�
x���

p
�x�x�� x

�
�

�
since

K�x� y� 
 �x � y�� 
 �x�y� � x�y��
� 
 x��y

�
� � �x�y�x�y� � x��y

�
� 
 
�x� � 
�y��

It is interesting to note that the maps


�x� 

�
x�� � x��� �x�x�� x

�
� � x��

�
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and


�x� 

�
x��� x�x�� x�x�� x

�
�

�
also accomplish the same task�

Indeed� although this simple example is very educational it is also misleading
since we can also map to in
nite dimensional Hilbert spaces� just as long as we
can evaluate inner products there without going to the Hilbert space� A special
example of when this can be done is accomplished by utilizing Mercer�s theorem�

Theorem 
 �Mercer� Consider a compact subset C of Rn� For a symmetric�
continuous� and square integrable function K�x� y� over C to have an absolutely
uniformly convergent representation

K�x� y� 


�X
i��

�i�i�x��i�y�

with � � � it is necessary and su�cient thatZ
C

Z
C

K�x� y�g�x�g�y� � �

for all g � L��C��

Consequently� for any kernel K�x� y� which satis
es the condition of the the�
orem� the map 
 � C � L� de
ned by

x �� �
p
�����x��

p
�����x�� ���������

satis
es

K�x� y� 
 
�x� � 
�y��

�� Statistical properties of support vector machines

Although Vapnik�s theorem � is a good motivation for the support vector ma�
chine� the VC bound obtained depends upon the data and therefore VC theory
cannot be applied directly to obtain performance bounds for the support vector
machine� This situation is resolved by Shawe�Taylor et� al ����� We quote here
their result� without proof�

Theorem � �Shawe�Taylor� Bartlett� Williamson� Anthony�
Suppose the support of the x marginal lies in a ball of radius D� Fix 
 and �� If

we succeed in classifying the data with an optimal hyperplane with margin greater
than �� and b � D� then with probability greater than � � 
 the generalization
error is bounded by

�

k

�
���D�

��
log �

�ek��

���D�
� log ��k � log

�k




�
�
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�� Support vector machines for non�separable data

When the data are not separable� the previous theorems do not apply� Indeed�
the margin is then negative� However� the performance bounds above have been
extended by Bartlett ��� to the case of nonseparable data as follows�

Theorem �
 �Bartlett�

Suppose the support of the x marginal lies in a ball of radius D� There is a
constant c such that if we 
x 
 and �� with probability greater than � � 
 the
generalization error is bounded by

m

k
�

s
c

k

�
D�

��
log� k � log

�




�
�

where m is the number of samples with margin less than ��

Consequently� any algorithm which tries to minimize the number of samples
with margin less than some 
xed � could be a good candidate for a support vector
machine for nonseparable data� Recall the modi
ed optimization problem that
determines the optimal hyperplane f���g� The optimal hyperplane is x����b� 

��

The constraints are meant to separate the data� and among those planes that
separate the data� minimizing j�j� accomplishes separation with the greatest
margin� If the data is not separable� then these constraints cannot be satis
ed�
so an alternative formulation is needed� Suppose we relax the constraints to

yi�xi � � � b� � �� �i

with �i � � but impose the penalty

���� 


kX
i��

���i�

where

���� 
 �� � 
 � ����

���� 
 �� � � �� ����

This penalty counts the number of data points that are not classi
ed correctly�
However� we now have gone from the optimization problem

min
�

�
j�j�

yi�xi � � � b� � �

with one optimization criteria to something like



�� Don Hush and Clint Scovel

min
�

�
j�j�

min����

yi�xi � � � b� � �� �i�

However� this is not a bona
de optimization problem� Indeed� there is no
canonical way to determine one so we have many choices to make� A possible
solution is the following�

min���� ����

yi�xi � � � b� � �� �i ����

j�j� � A� ����

for some predetermined A�
This amounts to minimizing the number of points that have margin smaller

than the cuto	 �
A � However� the smaller the margin cuto	� the larger the number

of points which will not satisfy the cuto	� On the other hand the larger the
margin on the remaining points the better for generalization bounds� Indeed� one
can see the balance between these two terms in the estimate of generalization
error of Bartlett ���

m

k
�

s
c

k

�
D�

��
log� k � log

�




�
�

where m is the number of samples with margin less than � 
 �
A �

The di�culty with this optimization problem is that this problem is close to a
known to be NP�Complete problem and is suspected to be hard� Therefore� since
we have already performed an adhoc modi
cation because of non�separability�
let us perform another modi
cation to reduce the computational complexity� We
wish to do so without giving up the existence of performance bounds� Consider
simply changing to a new loss function

���� 
 �p�

This function tends to the original as p tends to �� However� for p 
 � or p 
 �
we can solve the optimization problem in polynomial time� Unfortunately� for
p 
 � there are no performance bounds� On the other hand� Shawe�Taylor and
Cristianini ���� have performance bounds for p 
 ��

Theorem �� �Shawe�Taylor� Cristianini�
Suppose the support of the x marginal lies in a ball of radius D� Fix � and


�With probability greater than � � 
� the generalization error corresponding to
any hyperplane x � � � b 
 � is bounded by

�

k

�
h log �

�ek

h
� log ��k � log

���k��� � log k��




�
�
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where

h 

����D �

p
���� � ����D

p
���

��

and

�� 

kX
i��

�
max ��� �� yi�xi � � � b��

��
�

Consequently� for this optimization problem� not only can we compute its
solution but we can estimate its generalization error as a function of prescribed
� and computed �� Since our optimization problem� for 
xed �� amounts to
minimization of �� the optimization problem amounts to optimization of the
performance bound� One can also see the balance between the � and � in the
function

h 

����D �

p
���� � ����D

p
���

��

The �optimal� balance can be determined using an iterative scheme to 
nd the �
that minimizes h� Such a scheme would require that we solve the QP optimization
problem at each iteration�

Alternatively� we could consider a modi
cation that optimizes � and � si�
multaneously� such as

min
��
�
j�j� � C����

�
����

yi�xi � � � b� � �� �i� ����

�i � �� ����

This problem shares the same computational advantages as the previous� The
constant C represents the balance between the margin cuto	 and the number of
training points with margin less than this cuto	� Once again we could consider
iterative schemes for the determination of the constant C� Of course� the error
bounds of Shawe�Taylor and Cristianini ���� still apply here�

Algorithm development for SVMs has focused on the problem f��������g
with p 
 � �i�e� ���� 
 ��� Although this creates a slight disconnect between the
terms being optimized and those in the bound� it is believed to produce superior
results in practice�

�� Algorithms for Support Vector Machines

Let

zi 
 
�xi�

and

zi � zj 
 
�xi� � 
�xj� 
 K�xi� xj�

Examples of kernels commonly used for real�valued data include
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�� Polynomial
K�x� y� 
 �x � y � ��p

�� Gaussian �RBF�

K�x� y� 
 e�kx�yk
�����

�� Sigmoid �neural network�

K�x� y� 
 tanh �a��x � y� � a��

Note that restrictions must be placed on �a�� a�� to satisfy Mercer�s condition ����
We wish to solve the following �primal� quadratic programming �QP� problem
to produce a linear classi
er in H�

min �
�k�k� � C

Pk
i�� �i

s�t� yi�zi � � � b� � �� �i
�i � �� i 
 �� �� ���� k

����

Cortes and Vapnik call this the �soft margin formulation� ���� This problem has
size dim�z�� k variables� The size of dim�z� in the SVM can make this problem
too large to solve on a digital computer� Fortunately there is a dual form with
more manageable size� Consider the Lagrangian of the QP above�

L��� b� �� �� �� 

�

�
k�k� � C

kX
i��

�i �
X
i

�i �yi�zi � � � b�� � � �i��
X
i

�i�i

Di	erentiating with respect to �� b� � and applying the Kuhn�Tucker optimality
conditions gives

�� 

X
i

�iyizi ����

X
i

�iyi 
 � ����

�i � �i 
 C ����

Substituting ������� into the Lagrangian yields

L���� b�� ��� �� �� 

X
i

�i � �

�

X
i

X
j

�i�jyiyjzi � zj

Maximizing L with respect to �� � and incorporating the conditions in �������
gives the Wolfe Dual optimization problem

max � �
�� � �Q�� � � � �

s�t� � � y 
 �
� � �i � C� i 
 �� �� ���� k

����

where Q is of the form

Qij 
 yiyj�zi � zj� 
 yiyjK�xi� xj�
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This problem has size k �independent of dim�z���� Further� it can be solved using
computations that live entirely in the original data space Rn � f����g through
use of the kernel� Q is positive semide
nite� making this a concave QP problem
with simple constraints �one equality constraint and k box constraints�� Thus�
it admits a polynomial�time solution ����

It is easy to show that Q is symmetric and positive semi�de
nite� If we
de
ne Z 
 �y�z�� y�z�� ���� ykzk� then Q is equal to ZTZ� and Q is symmetric by
QT 
 �ZTZ�T 
 Q and positive semi�de
nite by u � �Qu� 
 jZuj� � ��

For small to moderate values of k the Wolfe Dual can be solved using standard
algorithms for convex QP problems ��� �although care must be taken to account
for the reduced rank of Q�� For large k however� the storage requirements can
be excessive for �most� modern day computers� For example� with k 
 ��� ���
approximately �� GBytes of storage would be required for Q� This barrier can
be overcome by decomposing the original QP problem into a collection smaller
problems�

Suppose we partition � into two sets� a working set �W and a non�working
set �N � Similarly y is partitioned into yW and yN � and Q is partitioned as follows

Q 


	
QW QWN

QNW QN




where QWN 
 QNW � Then ���� can be written

max � �
��WQW�W � �W � ���QWN�N �� �

��NQN�N � �N � �
s�t� �W � yW � �N � yN 
 �

� � �i � C� i 
 �� �� ���� k
����

With �N 
xed this becomes a QP problem of size dim��W � with the same
generic properties as the original� This motivates algorithmic strategies that solve
a sequence of QP problems over di	erent working sets� The key is to select a
working set at each step that will guarantee progress toward the original problem
solution�

One approach is to design the sequence of QP problems to search for a
working set that contains all the support vectors� This approach is motivated
by the fact that we expect the number of support vectors to be small� and that
the solution to ���� can be obtained by solving a �smaller� QP problem over
the support vectors alone� To see why� recall that ��i �
 � corresponds to an
�active� constraint in the primal� which in turn corresponds to a support vector�
Typically n 
 k� and since Theorem � gives jKj � n� it is reasonable to expect
the number of support vectors to be small �this expectation is less plausible in
the non�separable case�� Now� if the support vectors are known the solution to
���� can be obtained by placing them in the working set and solving ���� with
�N 
 �� In the chunking ���� strategy the working set is initialized to a subset
of the data� and an initial QP problem is solved� Then the non�support vectors
from this solution are moved to the non�working set and a �chunk� �subset� of
samples from S � W that violate the Kuhn�Tucker optimality conditions are
moved to W � This forms a new working set� and the process is repeated until all
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samples satisfy the Kuhn�Tucker optimality conditions� A proof of convergence
for this process is given by Osuna� et�al� ���� who also propose a slightly di	erent
approach� Their decomposition strategy is similar to chunking except that the QP
problems are always the same size ���� The working set is initialized to a subset
of the data� and an initial QP problem is solved� Then the non�support vectors
from this solution are �swapped� with a subset of samples from S � W that
violate the Kuhn�Tucker optimality conditions� This forms a new working set�
and the process is repeated until all samples satisfy the Kuhn�Tucker optimality
conditions�

Note that both chunking and decomposition require the working set to be
larger than the 
nal number of support vectors� which is not known ahead of
time� Alternatively we can modify the algorithm so that it allows support vec�
tors to be swapped out of the working set� Employing swaps that remove sup�
port vectors from the working set leads to QP problems for which �N �
 � in
����� but this is easily accommodated� The key is to �swap in� samples from
the non�working set that guarantee a reduction in the original criterion� steep�
est feasible descent direction vector ���� One possible strategy is to select sam�
ples that correspond to the largest components of the Software that employs
this method can be obtained at http���www�ai�informatik�uni�dortmund�de�
FORSCHUNG�VERFAHREN�SVM LIGHT�svm light�eng�html� Platt�s Sequen�
tial Minimal Optimization �SMO� algorithm employs essentially the same strat�
egy� but restricts its working sets to size � ����� The advantage of SMO is that
the �size �� QP problems have a simple closed form solution�
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